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SY NOPSlS 

A new multiangle laser light-scattering ( MALLS ) detector for size exclusion chromatog- 
raphy promises simultaneous measurement of both weight-average molecular weight ( M ,  ) 
and radius of gyration ( r,) at each retention volume across the chromatogram. However, 
there are a variety of ways of interpreting the raw data to provide these results. This study 
examines variations of three different rearrangements of the basic light-scattering equation. 
Data from a room temperature analysis of polystyrene and a high-temperature analysis of 
polyethylene were used. The degree of fit of each equation to the data and the precision of 
the M ,  and r, values are evaluated. To define precision, joint confidence regions (JCRs) 
were calculated and compared to simple confidence intervals based upon standard deviations 
in order to see the effect of interdependence of M ,  and r,. Results showed that the Debye 
equation was superior to the inverse Debye equation (similar to the Zimm plot) for the 
interpretation of MALLS data. The effect of the quantity of data included in the regression 
model was also assessed. Use of only the most precise four detector angles was compared 
to use of a full set of 15 angles. Precision of weight-average molecular weight values was 
found to be improved as the detector angle decreased because of the shortened extrapolation 
to zero angle. Precision at  room temperature was much superior to that at  high temperature. 
Use of simple confidence intervals was shown to provide only a fair approximation to the 
more accurate JCR. The “natural scatter” of data shown by the JCR generally shows the 
same trend as do plots in the literature of M ,  vs. r,. Thus, it is concluded that JCRs should 
be more often calculated in light-scattering studies in order to distinguish random scatter 
from meaningful correlations of these values. 0 1993 John Wiley & Sons, Inc. 

I NTRO DU CTlO N 

In Part I of this series, the instrument precision and 
accuracy of the Chromatix KMX 6 (LALLS ) and 
the Wyatt Dawn-F multiangle laser light-scattering 
(MALLS) detector were evaluated. MALLS can 
provide both M ,  and r, at each retention volume 
because it can determine the angular dependence of 

* To whom correspondence should be addressed. 
Note that this paper deals only with local values of weight- 

average molecular weight and radius of gyration (actually the z- 
average root mean square radius of gyration). By local values is 
meant the values at a particular retention volume (i.e., for a par- 
ticular molecular size fractionated by the chromatograph). These 
values should be -&stingujshed from the “whole polymer” or 
“overall” values, M ,  and rs (see Part I ) .  
Journal of Applied Polymer Science, Vol. 49, 1375-1385 (1993) 
0 1993 John Wiley & Sons, Inc. CCC OOZl-S995/93/081375-11 

scattered light by measuring scattered light at each 
of 15 different angles simultaneously.’ However, 
there are many different computational options 
available to obtain these results. 

This paper assesses some of these by examining 
their degree of fit to the data and the precision of 
the results obtained. Some of our earlier results in 
this area have recently been published.’ In the next 
section, the options to be examined are detailed and 
the statistical methods of comparison are described. 

COMPUTATIONAL OPTIONS IN MALLS 

The presence of “computational options” refers to 
the fact that the same two local values, M ,  and r,, 
at each retention volume can be calculated from the 
MALLS data in different ways. Both the accuracy 
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(closeness to truth) and precision (repeatability) of 
the values obtained can be affected by the option 
selected. 

In this paper, these options originate from four 
sources: 

( i )  A subset of the main body of data can be 
selected for calculation. For example, the 
most precise four angles can be used (in- 
stead of all 15 angles). 

(ii) Different series approximations can be used. 
As will be seen below, one equation utilizes 
a series expression for the angular depen- 
dence of scattered light, while another uti- 
lizes an series expression for the inverse de- 
pendence. 

(iii ) Additional terms can be retained in series 
approximations contained in the light-scat- 
tering equations. For example, higher terms 
can be retained in the expression for the 
angular dependence of scattered light. 

(iv) The criterion used for accepting a fit of an 
equation to the data can result in different 
values of M ,  and r, with different reproduc- 
ibility obtained from the same equations. 
The complication here is that light scatter- 
ing has evolved based upon graphical meth- 
ods. Equations have been rearranged in dif- 
ferent ways to obtain straight lines when 
plotted so that they can be readily extrap- 
olated to zero. Rearrangement of an equa- 
tion produces a group of measured quantities 
that is to be calculated at each angle and 
plotted. The error in such a group can be 
much greater than the error in the individual 
measured quantities because of “error prop- 
agation” and may be a strong function of 
the angle. In applying computer-fitting 
methods, such as least squares, to fit the 
plots, this variation in error needs to be 
taken into account in order to obtain 
the best obtainable accuracy and precision 
in the estimates of M ,  and r,. If an in- 
correct weighting is used, a systematic error 
in the fit can result as well as inaccuracy 
and imprecision in these estimates. Correct 
weighting factors can be obtained by apply- 
ing the error propagation equation to the 
group in order to derive an expression for 
the error variance of the group as a whole. 

In this paper, three different rearrangements of 
the basic light-scattering equation used for fitting 
MALLS data are examined. The paper then pro- 

ceeds to examine the adequacy of the fit and pre- 
cision of the estimated M,,, and rg values for each 
when used with the data. Accuracy generally cannot 
be estimated since the true values are not known. 
The three equation rearrangements and the com- 
putational options resulting are summarized in the 
following paragraphs. 

The Debye Plot Equation 

Conventional interpretation of MALLS to obtain 
M ,  and r, depends upon construction of a Debye 
plot3 at  each retention volume [a  plot of RB/Kc vs. 
sin2(O/2)] based upon 

where P ( 0 )  represents the angular dependence of 
the scattered light: 

16?r2n~r~(u)sin2(O/2)  
P ( 6 )  = 1 - 

3x5 

+ higher terms (2)  

and K is the instrument’s optical constant: 

( 3 )  

for each of the 15 detector angles. Equation (1) as- 
sumes that concentrations are sufficiently dilute that 
terms involving the product of the second virial coef- 
ficient, concentration, and M ,  together are negli- 
gible. 

Linear regression can be used to determine M ,  
and r, at any specific retention volume by minimiz- 
ing Q over the n, angles at retention volume u :  

where wj is a weighting factor equal to the reciprocal 
of the error variance of the quantity [ R B ; ( v ) /  
( K  c ( u )  Iexp. This approach, with w; equal to unity 
a t  each angle, is used in the commercial software, 
ASTRA version 1.15 and later versions, offered by 
Wyatt Technology Corp., Santa Barbara, CA. 

However, when the error variance of [ R B , ( u ) /  
( K  C(V)],,, is obtained at a particular value of u 
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from replicate chromatograms, the fluctuation in 
c ( u )  at u are factored into the estimate along with 
the variation in R,j( u )  . Only the latter varies with 
angle 8. However, it can be shown that the error 
variance of the group [ R8j( u ) / ( K  c (  u)lexp may be 
greater and may vary more with the angle than will 
RBj( u )  alone because of the presence of error in the 
concentration. Since a variation in variance with 
the angle means a variation of the weighting factor 
with the angle, the fit may be affected. However, 
when a fit of [ R e j ( u ) / ( K  c ( u ) ] ~ , ,  vs. sin2(8/2) is 
actually carried out at a particular retention volume, 
the value of concentration used to calculate the 
group [ R e j ( u ) / ( K  ~ ( u ) ] , , ,  is a constant. Then, the 
random error in concentration appears as a constant 
difference between the single value of concentration 
used and the true value. This causes a systematic 
error, or bias, in the results. Thus, the error in con- 
centration can affect the results in two different 
ways: through the weighting factors and through 
bias. If the more traditional weighting factor of unity 
is used for each term, the error variance of [ Roj( u )  / 
( K  c (  u ) l e x p  for each of the 15 MALLS detectors is 
assumed to be constant with respect to the scattering 
angle. 

Inverse Debye Plot Equation 

Another alternative for MALLS data interpretation 
is to plot K c / R 8  vs. sin2(8/2). This “inverse Debye 
plot equation” is based on a rearrangement of eq. 
(2) :  

where 

167r2nEr: ( u )  sin2 (8/2) 
p- l (e)  = 1 + 

3hE 

+ higher terms ( 6 )  

To obtain M ,  and r,, linear least-squares regression 
minimizes 

This rearrangement is very similar in form to the 
Zimm plot commonly used in light scattering. To 
obtain molecular weight information from a Zimm 

plot, double extrapolation to zero angle and zero 
concentration is required. For the low concentra- 
tions used in SEC, the molecular weight can be ob- 
tained simply from the intercept of the inverse 
Debye plot a t  zero angle. The inverse Debye plot 
[ eq. (7)  ] is a good approximation4 over a wider range 
of concentrations than is its reciprocal expression 

Again, regression can be used to determine both 
M ,  and rg at  each retention volume, u .  If the error 
is constant for each angle a t  a particular retention 
volume u ,  then we may be able to again use a 
weighting factor of unity in minimizing the “objec- 
tive function”. Alternatively, weighting factors re- 
flecting the precision of the dependent variable in 
the fit could be calculated as the inverse of the error 
variance of [ K c (  u ) /R8 j (  u ) l exp  from replicate data 
(in a similar way as was described for the Debye 
plot equation). However, in this case, the contri- 
bution of the error variance of the concentration to 
the error variance of the group was assumed to be 
much less than the contribution of R,j( u),,,. Thus, 
realizing again that a constant value of concentra- 
tion is used during any one fit, the required weighting 
factor for eq. (7)  at a particular u could be calculated 
from 

(eq. ( 4 ~ .  

for each of the different angles, j .  In this paper, fits 
were done using the inverse Debye plot equation 
with this weighting factor as well as with the more 
traditional weighting factor of unity. 

The “No-rearrangement” Equation 

Finally, considering that both the Debye and inverse 
Debye equations actually originate from a desire to 
obtain straight-line graphs, and since regression is 
being used here and such graphs are not required, 
yet another alternative is to avoid rearrangement 
completely and to fit just the light-scattering signal, 
minimizing 

where the weighting factor is 

1 
(10) 

Note that the error in concentration makes no con- 
tribution to the weighting factors because only Rej( u ) 

w .  = - ’ dXP 
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is being fitted. As before, concentration is a single, 
constant value during a fit. With eq. ( 1 )  as the basic 
equation for the analysis and assuming that the dif- 
ference in the errors with angle are similar (i.e., no 
significant influence of weighting factors), the result 
of using eq. (9) should provide the same results as 
using eq. ( 4 ) .  However, straight-line plots no longer 
are obtained using eq. (4 )  [or eq. (9) for that matter] 
if additional terms are used in the expression for 
P ( 0 )  [eq. ( 2 ) l :  

167r2n5 r i  ( u ) sin’ (0/2) 
P ( 0 )  N 1 - 

3x; 

or if more complex expressions than eq. ( 1 ) are used 
for the light-scattering response: 

where A2 is the second virial coefficient. 
Equation (12) is a form that has provided mo- 

tivation for using the inverse Debye plot equation 
since it can be rearranged to a straight-line form: 

However, it should be reiterated that estimates of 
r, and M ,  at each retention volume no longer require 
graphical solutions. In this paper, linear regression 
easily handles curves generated using eq. ( 11 ) with 
eq. ( 4 )  or (9) , for example.* Equation (9)  was used 
only with eq. (11 ) (i.e., not with fewer terms) in 
this work. Examination of the ability of one equation 
to handle a more complicated form than the other 
for a graphical solution is not the subject of this 
work. Rather, we will show the results obtained from 
eqs. ( 4 )  , ( 7), and (9)  applied in a variety of ways 
using regression and on data where they may be ex- 
pected to arrive at the same estimates of r, and M ,  
at each retention volume. Two aspects are examined 
the degree of fit to the data obtained and the pre- 
cision of the estimates of rg and M ,  obtained at  each 

* Note that linear regression refers to linearity in the equation 
coefficients and not linearity in the independent variable, sin2( 8 /  
2 ) .  Therefore, linear regression programs can fit both straight 
lines and some curves (e.g., polynomials). 

retention volume. These are discussed in the next 
section. 

STATISTICAL MEASURES 

Degree of Fit 
A plot of residuals (i.e., the difference between the 
calculated ordinate value and the experimental or- 
dinate value) vs. sin2( 0/2) can be used to scrutinize 
any systematic lack of fit of eq. (2  ) to the data. Such 
a plot shows the difference between the fitted value 
and the experimental data. These were used in this 
work along with an analysis of variance to check 
adequacy of fit.5 The latter method tests for lack of 
fit by comparison of the ratio of the sum of squares 
due to both lack of fit and sum of squares due to 
pure error to the F-distribution. A simple “yes” or 
“no” can then be tabulated to specify whether or 
not lack of fit was significant at the 90% level. De- 
tails of the computation method are in standard sta- 
tistics  reference^.^^^ 

Precision of M, and rg 

Defining the error in M ,  and r, allows for the in‘- 
terdependence of these two calculated quantities. 
Previous studies have ignored this interdependence. 
Accounting for it requires calculation of joint con- 
fidence regions (JCRs) rather than simple confi- 
dence intervals based upon standard 
A JCR is shown as a closed area on a plot of M ,  vs. 
r,. Its meaning can best be understood by stating 
that if 100 replicate sets of data are each analyzed 
to provide a 95% joint confidence region, then, in 
approximately 95 of the 100 regions so obtained, the 
true value of M ,  and r, will be represented by a 
point inside the region, and in about five cases, the 
true values will fall outside. In contrast, the more 
traditional calculation of a 95% confidence interval 
appears as a defined range of values for either M ,  
or r, and assumes that M ,  is independent of rg.  For 
M,  , for example, this means that if M ,  is indepen- 
dent of rg and if 100 replicate measures of M ,  are 
each analyzed to provide a 95% confidence interval, 
then, in approximately 95 of the 100 intervals so 
obtained, the true value of M ,  will be represented 
by a point inside the range, and in about five cases, 
the true value will fall outside. It is well known that 
two coefficients in an equation (e.g., M ,  and rg in 
this case) are generally not independent. Further- 
more, when the independence assumption is not 
valid, then the 95% confidence intervals are known 
to be much inferior to the JCR in defining precision. 
This will be shown graphically in a later section. 
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The traditional confidence interval for a mean 
value is the product of the standard deviation of the 
mean and the appropriate value from the Student's 
t di~tr ibut ion.~.~ An estimate of the interval for a 
single measurement is of interest here and is con- 
sidered as +2 s, where s is the sample estimate of 
the standard deviation. Calculation of joint confi- 
dence regions is more difficult but still readily ac- 
complished. Several methods are available. A general 
method involving nonlinear regression was used 
here.' 

EXPERIMENTAL CONDITIONS 

Experimental conditions were as described in Part I. 

were used, they were chosen based on the most re- 
producible signal ( smallest standard deviation). 

For the room-temperature MALLS results listed 
in Table 11, the four retention volumes selected cor- 
respond to molecular weights ranging from 175,000 
to 700,000. Lack of fit of the linear models was not 
significant a t  the 90% level despite the use of dif- 
ferent equations or various combinations of angles. 
However, the percent variation explained by the 
model improved notably (e.g., from 33 to 99% in one 
case) when the lowest angle was omitted from the 
calculations. When only the most precise four angles 
were used, a reasonably high percentage, i.e., 50- 
90%, of the variation in the data was explained by 
the linear models; however, the degree of freedom 
on the lack of fit error sum of squares was only 1 
when four angles were used. Thus, the analysis of 
variance would not be very sensitive to the lack of 

COMPUTATIONAL METHODS 
Table I MALLS Detector Sets Used 

The differential refractive index used was 0.184 
mL/g for polystyrene at  40°C in tetrahydrofuran. 
For polyethylene in 1,2,4-trichlorobenzene ( TCB ) 
at 145OC, the value of the differential refractive in- 
dex increment used was -0.098 mL/g based on work 
done by Grinshpun." Joint confidence regions cal- 
culated to estimate precision were done using the 
Nelder-Mead l1 simplex optimization method. Sta- 
tistical procedures in the SAS computer program 
were used to evaluate lack of fit and significance of 
parameters. 

RESULTS AND DISCUSSION 

Degree of Fit 
To verify that the models chosen for the multiangle 
data were adequate, statistical tests were performed 
using the 10 repeated SEC /MALLS measurements. 
Analysis of variance for the repeated SEC/MALLS 
measurements was used to assess the lack of fit at  
four different retention volumes for both the high- 
and room-temperature data. Three basic equations 
were used ( i )  eq. (9)  with no rearrangement; (ii) 
eq. ( 4) ,  the Debye plot; and ( iii) eq. ( 7 ) , the inverse 
Debye plot equation. All weighting factors were set 
a t  unity in the lack of fit test. The number of terms 
carried in the P(  6) or P-'( 6) expressions [ eqs. ( 2 )  
and ( 6 )  ] determined the order of the polynomial. 
Not all of the data from the 15 possible detector 
angles were used because usually the lowest angles 
showed excessive noise. Several sets of detector an- 
gles were considered in the analysis and they are 
listed in Table I. The results from SAS are sum- 
marized in Tables I1 and 111. When only four angles 

Actual 

("C) Set Angles Angles 
Temperature Detector No. Observation 

145 I 15 

I1 13 

I11 4 

40 IV 15 

V 14 

VI 4 

13.4', 21.0', 28.2", 
35.8", 44.2', 53.8', 
64.8', 77.0°, 90.0", 
103.0°, 115.2", 
126.2', 135.8', 
144.2', 151.8" 

28.2', 35.8', 44.2', 
53.8', 64.8', 77.0°, 
90.0', 103.0', 
115.2', 126.2', 
135.8', 144.2", 
151.8' 

44.2', 53.8', 77.0', 
115.2' 

20.2', 27.7', 35.4', 
43.9', 53.6', 64.7', 
76.9', 90.0°, 
103.1", 115.4', 
126.4', 136.1°, 
144.6", 152.3', 
159.8' 

27.7', 35.4', 43.9', 
53.6', 64.7', 76.9', 
90.0', 103.1', 
115.4", 126.4', 
136.1', 144.6", 
152.3", 159.8' 

53.6', 136.1', 
152.3', 159.8' 
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Table I1 Room-temperature MALLS Lack of Fit Assessment 

Percent 
Variation Lack of Fit 

(mL) No. Description Model" Angles by Model 90% Level 
Retention Volume Eq. No. Explained Significant a t  

17.4 

( M ,  697,000) 

18.4 
(M,  437,000) 

19.4 
( M ,  270,000) 

20.4 
( M ,  175,000) 

(9) Not rearranged y = a + bx + cx2 

(9) Not rearranged y = a + bx + cx2 

(4) Debye y = a + b x  
y = a + bx + cx2 
y = a + b x  

(7) Inverse Debye y = a + b x  
y = a + bx + cx2 
y = a + b x  

(4) Debye y = a + b x  

(4) Debye y = a + b x  

15 
14 
4 

15 
14 
4 

14 
14 
4 

14 
14 
4 

15 
14 
4 

15 
14 
4 

60.00 
99.90 
65.00 

33.00 
99.70 
72.80 

99.99 
99.95 
83.60 

99.99 
99.98 
83.40 

99.00 
99.98 
90.40 

99.00 
98.20 
54.50 

No 
No 
No 

No 
No 
No 

No 
No 
No 

No 
No 
No 

No 
No 
No 

No 
No 
No 

a x = sin2(0/2) for all equations used-eq. (9): y = Re; eq. (4): y = &/(KC); eq. (7): y = (Kc)/R,.  

fit in the four-angle case. Adding higher-order terms 
in the expressions did not improve the fit. Thus, for 
a linear homopolymer, such as the NBS 706, first- 
order equations gave adequate representation of the 
light-scattering effects. For optimum results, the 
lowest angle should not be included in calculations 
for the molecular parameters of interest. 

The high-temperature MALLS results are listed 
in Table 111. Here, the four retention volumes cor- 
respond to molecular weights ranging from 
15,000,000 to 86,000. Lack of fit of the linear model 
was significant for some of the retention volumes 
despite the different equations or various combi- 
nation of angles. The percent variation explained 
by the model improved only marginally even when 
the lowest two angles were omitted from the cal- 
culations. When only the most precise four angles 
were used, a reasonably higher percentage ( - 50% ) 
of the variations in the data is explained by the linear 
models. For the peak of the chromatogram (34.13 
mL) , additional terms were included in the P(  0 )  or 
P-' ( 0 )  , leading to higher-order polynomials being 
used. Using higher polynomials did improve the fit, 
especially going from first- to second-order poly- 
nomials. The cubic equation offered a smaller im- 

provement relative to the second-order expression. 
Comparing Tables I1 and 111, it can readily be 

seen that modeling high-temperature MALLS 
proved a much more challenging task than did mod- 
eling the room-temperature data. As expected, the 
light-scattering signal was weaker than that ob- 
tained at  room temperature. Also, there were more 
sources of error; for example, temperature fluctua- 
tion perturbed the differential refractive index in- 
crement. For a branched polymer, such as the SRM 
1476, higher terms may be required for adequate 
representation of the light-scattering effects. How- 
ever, noise levels in these data were too high to per- 
mit this aspect to be examined. Omitting the two 
lowest angles, i.e., using either detector set I1 or I11 
(listed in Table I )  for the high-temperature MALLS 
data, gave better fit than if these angles were in- 
cluded in the regression calculation. However, even 
the very best fit obtained explained only 65% of the 
variation in the data. 

Precision of M, and r, 
As mentioned previously, confidence intervals cal- 
culated from the standard deviation can be inade- 
quate estimates of precision because of the inter- 
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Table I11 High-temperature MALLS Lack of Fit Assessment 

Percent 
Variation Lack of Fit 

No. Description Model" Angles by Model 90% Level 
Retention Volume Eq. No. Explained Significant at 

(mL) 

30.8 
(M,  15,000,000) 

32.5 
( M ,  523,000) 

34.1 
(Mu 154,000) 

35.0 
( M ,  86,000) 

(9) Not rearranged y = a + bx + cx2 

(9) Not rearranged y = a + bx + cx2 

(9) Not rearranged y = a + bx + cx2 

(4) Debye y = a + b x  
y = a + bx + cx2 
y = a + b x  

y = a + b x  

(7) Inverse Debye y = a + b x  
y = a + bx + cx2 
y = a + b x  

y = a + b x  

+ cx2 + dx3 

+ cx2 + dx3 

(9) Not rearranged y = a + bx + cx2 

15 
13 
4 

15 
13 
4 

15 
13 
4 

13 
13 
13 

4 

13 
13 
13 

4 

15 
13 
4 

00.00 
43.40 
14.40 

0.01 
3.30 

46.00 

0.04 
0.75 

50.00 

5.43 
21.60 
30.60 

57.20 

3.60 
19.70 
29.90 

65.00 

0.12 
1.25 
8.00 

Yes 
No 
No 

Yes 
Yes 
No 

Yes 
Yes 
No 

Yes 
No 
No 

No 

Yes 
No 
No 

No 

Yes 
Yes 
Yes 

a x = sin2(O/2) for all equations used-eq. (9): y = Re; eq. (4): y = &/(Kc); eq. (7): y = (Kc)/Re 

dependence among parameters. Such is the case for 
MALLS when both r, and M ,  are determined from 
the same equation. In Figure 1, lines representing 
two standard deviations (approximate 95% confi- 
dence limits) are shown superimposed on the cor- 
responding joint confidence region (JCR).  If the 
correlation between r, and M ,  is ignored, a rectangle 
is obtained. The precision defined by the JCR shows 
that this rectangle encloses some area not included 
by the JCR and fails to include some area that is 
included by the JCR. Thus, to accurately represent 
the 95% confidence level of the derived parameters 
using MALLS, joint confidence regions were used 
instead of standard deviations. Plots of residuals are 
also included to investigate any vital differences be- 
tween the models and the degree of fit. 

JCRs were found for each of the options outlined 
in the theory section. Two different sets of scattering 
angles were used in the calculations at  both room 
and high temperature. Figure 2 is a plot of the stan- 
dard deviation of RB vs. scattering angle at room 

temperature. The 14 points shown correspond to one 
set of angles (detector set V in Table I )  used to find 
M ,  and r,. The second set of angles used to calculate 
M ,  and r, were the most precise four angles shown 
in Figure 2 (detector set VI) .  Figure 3 is the same 
plot for the high-temperature MALLS data. The two 
sets of angles used to determine r, and M ,  are de- 
tector sets I1 and I11 (see Table I ) .  Detector set I11 
is indicated by the unfilled squares plotted in Figure 
3. In the following sections, selection of the appro- 
priate equations to be used is discussed at both room 
and high temperatures. 

Room Temperature 

The JCRs are plotted along with the various esti- 
mates of local M ,  and r, obtained at  a single value 
of retention volume in Figures 4 and 5. The retention 
volume of 18.4 mL was chosen here because it cor- 
responds to the peak of the chromatogram. The use 

f only four angles considerably shortens calculation 
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Figure 1 95% confidence intervals (defined by the 
rectangle) compared with the corresponding JCR (the el- 
lipse) for local weight-average molecular weight and local 
radius of gyration determined by SEC/MALLS. Results 
are from use of the Debye equation at  a retention volume 
of 18.4 mL and collection from 14 scattering angles. 

time and allows selection of only the most precise 
angles. However, the JCRs show that estimates of 
local M ,  and rg obtained from using only four angles 
(Fig. 5) are less precise than those obtained from 
using 14 angles (Fig. 4 ) because the four angles are 
not sufficiently near to the intercept (54"-160" 
compared with 28"-160" ) . 

Plots of residuals for all methods showed a ran- 
dom scatter regardless of whether weighted or un- 
weighted residuals were plotted. From examination 
of the plot of standard deviation vs. 6' (Fig. 2 ) ,  it 
was evident that the error was almost constant with 
the angle except for the very lowest angle used and 
it was just barely significantly higher than the oth- 
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Figure 2 MALLS detector precision at  room temper- 
ature for a retention volume of 18.4 mL for SEC/MALLS 
(open circles correspond to angles providing most precise 
MALLS detector signal). 
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Figure 3 MALLS detector precision at  high tempera- 
ture for a retention volume of 34.1 mL for SEC/MALLS 
(open circles correspond to angles providing most precise 
MALLS detector signal). 

ers. The lack of effect of weighting factors on the 
random pattern of the scatter in plots of residuals 
was attributed to this invariance of error with angle. 

Considering the results of using eqs. ( 4 )  (the 
Debye plot) and eq. ( 9 )  (the "no-rearrangement" 
alternative), both indicated equivalent precision 
(identical joint confidence regions) for local M ,  and 
rg regardless of the detector set used. The main dif- 
ference between the above two options is the error 
in the ordinate because concentration was not in- 
cluded in the ordinate of one, but is in the other. In 
the regression, only a first-order term is required in 
eq. (5) because it gave adequate representation for 
linear homopolymers. Plotting the JCR from the 
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Figure 4 JCRs for local weight-average molecular 
weight and local radius of gyration for room-temperature 
MALLS using 14 angles (SEC/MALLS, NBS 706 poly- 
styrene analysis at  18.40 mL) : (A) Debye; (B ) weighted 
Debye; (C)  inverse Debye; (D)  weighted inverse Debye; 
(E)  unrearranged equation; ( + ) best estimate. 



LIGHT-SCATTERING DETECTORS FOR SEC. I1 1383 

Debye plot equation with weighted regression also 
yielded the same JCR. 

In contrast to the other two equations, the un- 
weighted inverse Debye plot [ eq. (7)  ] appeared in- 
ferior to the other methods in precision. Also, the 
estimates of r, and M ,  obtained from eq. (7)  were 
quite different than those obtained from either of 
the other two equations. In the inverse Debye plot 
equation, the linear approximation used for the 
P - ’ ( 8 )  shifted the rg and M ,  estimated to higher 
values compared to the Debye plot case, because the 
approximation becomes inadequate for large mole- 
cules or high angles. For MALLS data, a greater 
number of high-scattering angles were available. Use 
of the more correct weighting factor [ eq. (8) ] did 
provide a smaller joint confidence region than that 
obtained when all detector angles were treated 
equally for the four-angle detector set (Fig. 5 )  be- 
cause the lowest angle was weighted the most 
(smallest standard deviation). However, it was 
found, again, that of all the equation options, the 
inverse Debye plot is the most sensitive to the pre- 
cision of the lower angles. Removal of the assump- 
tion that concentration error did not contribute to 
the weighting factor was not examined; its removal 
may well improve the results for this equation still 
more. However, the need to specify weighting factors 
extremely accurately for this equation was consid- 
ered such a liability that further computational de- 
velopment work with the equation was not pursued. 

Hence, the linear unweighted (all angles treated 
equally) Debye equation was used in the analysis of 
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Figure 5 JCRs for local weight-average molecular 
weight and local radius of gyration for room-temperature 
MALLS using only most precise four angles (SEC/ 
MALLS, NBS 706 polystyrene analysis a t  18.40 mL): 
(A) Debye; (B ) weighted Debye; (C  ) inverse Debye; ( D  ) 
weighted inverse Debye; ( E )  unrearranged equation; ( + ) 
best estimate. 

5 

Figure 6 JCRs for local weight-average molecular 
weight and local radius of gyration for high-temperature 
MALLS (SEC/MALLS, SRM 1476 low-density polyeth- 
ylene analysis a t  34.13 mL): (A) Debye; (B)  weighted 
Debye; ( C )  inverse Debye; (D)  weighted inverse Debye; 
(E)  second-order equation; (+) best estimate. 

the NBS 706 MALLS data in Part I of this study 
over the inverse Debye and the “not-rearranged” 
equations. It produced r, and M ,  of equal or better 
precision and was more “robust” in terms of reduced 
sensitivity to the actual detector angles used in the 
regression compared to the inverse Debye case. The 
“not-rearranged” equation [ eq. (9)  1 ,  which utilized 
the Nelder-Mead simplex search routine to find r, 
and M,, required a much longer computation time. 
Introducing weighting factors based on the error 
variance at  each angle did not offer any gain in pre- 
cision of the molecular parameters calculated using 
the Debye equation for the room-temperature SEC/ 
MALLS system. 

High Temperature 

The JCRs for rg and M ,  at  34.1 mL are plotted in 
Figures 6 and 7. At 34.1 mL, the chromatogram of 
the main polymer peak of SRM 1476 showed the 
strongest signal. The 95% confidence region for the 
r, value at  high temperature ranged from 2 to 33 
nm, and, therefore, r, was considered not reproduc- 
ible regardless of the equation used. In contrast, the 
M, value showed an acceptable range of 127,000- 
147,000 at the 95% confidence level. When only the 
four most precise angles were used (Fig. 7 ) , precision 
of both r, and M ,  decreased from the case when 13 
angles were included in the calculations (Fig. 6 ) ,  
with the effect being particularly acute for r,. Similar 
to the results of the room-temperature study, the 
four angles selected were not sufficiently near to the 
intercept for a precise estimate of M ,  to be obtained. 

For the number of points available, no systematic 
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variation was detected from the plots of residuals 
for any of the equations regardless of whether 
weighted or unweighted residuals were plotted. From 
examining the plot of the standard deviation vs. B 
(Fig. 3 ) ,  it can be seen that the error variation with 
respect to detector angle was slight. 

JCRs from eq. ( 4 )  (the Debye plot) and eq. (9)  
combined with eq. ( 11) (the second-order polyno- 
mial ) demonstrated similar precision for local M ,  
and r, regardless of the detector set used. Including 
the second-order term in the expansion for P (  0 )  did 
not improve the precision, i.e., the JCR was not al- 
tered. The JCR from the Debye plot with weighting 
factors used in the regression showed only a marginal 
improvement over the others. 

The inverse Debye plot [ eq. ( 7)  ] again appeared 
inferior to the other methods in terms of precision 
at  high temperature as well as room temperature. 
The estimated rs and M ,  were shifted to higher val- 
ues compared to the Debye plot case, but, in general, 
there is a good grouping in the estimated values for 
rg and M, considering the uncertainty involved in 
the data. Use of the experimentally determined 
weighting factors [ eq. (8) ] revealed larger JCRs 
compared with when all detector angles were treated 
equally for both the four-angle and 14-angle detector 
sets (Figs. 6 and 7 )  because the highest angle was 
weighted the most (smallest standard deviation). 
Thus, again, of all the options, the inverse Debye 
plot is the most sensitive to the weighting factors 
used. A slight change in the weighting of the angles 
used in the regression is critical for the precision of 
the calculated r, and M,. 

1101 I I I l l  I ,  I I 

0 5 10 15 20 25 30 35 40 45 50 

rs (nm) 

Figure 7 JCRs for local weight-average molecular 
weight and local radius of gyration for high-temperature 
MALLS using only the most precise four angles (SEC/ 
MALLS, SRM 1476 low-density polyethylene analysis at 
34.13 mL): (A) Debye; ( B )  weighted Debye; (C)  inverse 
Debye; ( D )  weighted inverse Debye; ( E )  second-order 
Equation; (+) best estimate. 

Thus, the simple unweighted Debye equation was 
the appropriate equation to use for the SRM 1476 
MALLS data in this study. No appreciable im- 
provement in precision was gained by increasing the 
order of the equation, and introducing weighting 
factors based on the error variance at  each angle, 
because the main source of imprecision was not sys- 
tematic. Although the inverse Debye equation (sim- 
ilar to the Zimm equation) is the most common form 
found in the literature for classical light scattering, 
it is less tolerant in the selection of appropriate de- 
tector angles in the calculation. The chromatograms 
at low angle must be very precise in order to calculate 
reliable rg and M ,  using the inverse Debye equation. 
Higher angles can be used with the Debye equation 
with less serious effect. 

Correlations of M, and rB 

Plots of M ,  vs. r, are now commonplace in the lit- 
erature.'-l2 These plots are done with the objective 
of elucidating property interrelationships in polymer 
molecules." However, as seen in this work (as well 
as in our earlier results on different samples of the 
same polymer'), the JCR plots show that the "nat- 
ural scatter" of M ,  vs. rg occurs in a diagonal direc- 
tion along the route of such correlations. This is a 
consequence of experimental error in the raw data 
and the least-squares fitting procedure. Similar ef- 
fects in other areas of chemistry resulting when the 
slope and intercept of straight lines were correlated 
have misled many  investigator^.'^.^^ To avoid this 
result in light-scattering analysis, it is recommended 
that future investigations be concerned with this as- 
pect. Also, methods of treating the data in other 
ways (by utilizing equations that include only one 
of the parameters; e.g., Ref. 15) may well provide 
independent estimates of M ,  and rg and should be 
further investigated. 

CONCLUSIONS 

In comparing the precision of M ,  and r, deter- 

* 

mined from MALLS, the correlation of errors 
between the two parameters needs to be taken 
into account. Thus, the true error in rg, as 
shown in joint confidence regions, was signifi- 
cantly greater than that estimated from stan- 
dard deviation calculations. 
Studies directed at establishing correlations 
between M ,  and rg should define the JCRs for 
their data to distinguish real effects from ran- 
dom error. Failure to do so has meant mislead- 
ing results in analogous situations in other areas 
of chemistry. 
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Equation selection in MALLS was found to af- 
fect both accuracy and precision of calculated 
results. In particular, the inverse Debye equa- 
tion eq. 7 provided very different estimates of 
significantly lower precision than did either the 
Debye equation eq. 4 or the not-rearranged 
equation eq. 9. 
Using the most precise four detector angles did 
not necessarily improve the precision of the 
calculated values for multiangle light scattering 
data. The angles used must be as close to zero 
as possible (as well as being reasonably precise) 
for the intercept, Mu), and slope, rg,  to be re- 
producible. 

N O M E N C L A T U R E  

d n l d c  
K 
M W  

Mwi 

rgi 

2 
S exp 
U 
W 

concentration at  retention volume, ui 

concentration as a function of retention 

differential refractive index increment 
optical constant defined by eq. (3)  
local weight-average molecular weight at 

local weight-average molecular weight a t  

local weight-average molecular weight as 

whole polymer weight-average molecular 

Avogadro's number 
refractive index of the pure solvent 
number of angles used in computation 
scattering function [ eqs. (4) and ( 11 ) ] 
inverse scattering function [ eq. (6)  3 
objective function defined by eq. (5) or (7)  

excess Rayleigh ratio 
excess Rayleigh ratio as a function of re- 

tention volume 
whole polymer z-average root mean square 

radius of gyration 
local z-average root mean square radius of 

gyration at some retention volume 
local z-average root mean square radius of 

gyration at  retention volume, ui 

local z-average root mean square radius of 
gyration as a function of retention vol- 
ume 

volume, u 

some retention volume 

retention volume, ui 

a function of retention volume 

weight 

01 (9) 

error variance of Ra 
retention volume 
weighting factor 

A0 

e scattering angle 
wavelength of the incident light 

Subscripts 

calc calculated value 
exP experimental value 
1 retention volume 
i angle 
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